All Issue

2018 Vol.51, Issue 4 Preview Page
November 2018. pp. 360-368
Abstract

We analyzed the spectral reflectance characteristics of rice leaves according to the occurrence of bacterial leaf blight and the correlation between vegetation index and disease area ratio in order to evaluate the possibility of using Unmanned Aerial Vehicle (UAV) image for disease investigation. As a result, relationship between the spectral reflectance of inoculated rice leaves and the ratio of disease area showed a high correlation of 0.9 or more in wavelength from 700 nm to 750 nm. Also, the reflectance of the visible light region from 500 nm to 700 nm and the near infrared region in more than 800 nm showed a correlation from 0.8 to 0.9 more. The area ration of rice leaves increase rapidly after 10 days of inoculation. The vegetation index(NDVI, GNDVI and NDRE) that can be calculated by UAV images showed a tendency to decrease remarkably with increase of diseased area ratio. Relationship between the vegetation index and disease area ratio on the 10th day after the inoculation, in which disease area ratio increased rapidly, showed a negative linear correlation from -0.77 to -0.95. Therefore, it is considered that it is possible to analyze the diseased area by UAV image.

Change of spectral reflectance on rice leaves according to days after inoculation of Bacterial Leaf Blight.

References
  1. Aasen, H., A. Burkart, A. Bolten, and G. Bareth. 2015. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 108:245-259.10.1016/j.isprsjprs.2015.08.002
  2. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging, Remote Sens. 6(11):10395-10412.10.3390/rs61110395
  3. Choi, E.Y., S.Y. Hong, Y.H. Kim, G.C. Song, and Y.S. Jang. 2009. Quantification of soil properties using visible-nearinfrared reflectance spectroscopy. Korean J. Soil Sci. Fert. 42(6):522-528 (in Korean).
  4. Cohen, W.B. 1991. Response of vegetation indices to change in three measures of leaf water stress. Photogramm. Eng. Remote Sensing. 57(2):195-202.
  5. Das, P.K., B. Laxman, S.K. Rao, M.S. Seshasa, and V.K. Dadhwal. 2015. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. Int. J. Pest Manag. 61(4):359-368.10.1080/09670874.2015.1072652
  6. Duan, T., S.C. Chapman, Y. Guo, and B. Zheng. 2017. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 210:71-80.10.1016/j.fcr.2017.05.025
  7. Hong, S.Y., J.T. Lee, S.K. Rim, W.K. Jung, and I.S. Jo. 1998. Estimation of paddy rice growth increment by using spectral reflectance signature. Korea. J. Remote Sensing. 14(1):83-94(in Korean).
  8. Huang, J., H. Liao, Y. Zhu, J. Sun, Q. Sun, and X. Liu. 2012. Hyperspectral detection of rice damaged by rice leaf folder. Comput. Electron. Agric. 82:100-107.10.1016/j.compag.2012.01.002
  9. Jensen, J.R. 2013. Remote sensing of the environment: an earth resource perspective. Pearson education limited. p. 620.
  10. Kim, S.H. 2016. A study on the diffusion of Korean agricultural ICT and role of the agricultural cooperative federation using the theory of technology adoption life cycle and chasm. Cooperative management review 45: 1-27(in Korean).
  11. Lee, B.O., J.W. Yoon, J.H. Yang, C.Z. Jin. 2016. Strategies for the value innovation of agriculture in Korea. J. Agric. Life Environ. Sci. 28(1):43-51(in Korean).
  12. Lee, K.D., C.W. Park, K.H. So, and S.I. Na. 2017b. Selection of optimal vegetation indices and regression model for estimation of rice growth using UAV aerial images. Korean J. Soil Sci. Fert. 50(5):409-421 (in Korean).
  13. Lee, K.D., C.W. Park, K.H. So, Ki-Deog Kim, and S.I. Na. 2017a. Characteristics of UAV aerial images for monitoring of highland Kimchi cabbage. Korean J. Soil Sci. Fert. 50(3):162-178 (in Korean).10.7745/KJSSF.2017.50.3.162
  14. Lee, K.D., S.I. Na, S.C. Baek, K.D. Park, J.S. Choi, S.J. Kim, H.J. Kim, H.S. Choi and S.Y. Hong. 2015. Estimating the amount of nitrogen in hairy vetch on paddy fields using unmanned aerial vehicle imagery. Korean J. Soil Sci. Fert. 48(5):384-390.10.7745/KJSSF.2015.48.5.384
  15. Lee, K.D., Y.E. Lee, C.W. Park, S.Y. Hong, and S.I. Na. 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV "Ebee". Korean J. Soil Sci. Fert. 49(6):731-742.10.7745/KJSSF.2016.49.6.731
  16. Mahlein, A.K., U. Steiner, H.W. Dehne, and E.C. Oerke. 2010. Spectral signatures of sugar beet leaves for the detection and differentiation of disease. Precision Agric. 11:413-431.10.1007/s11119-010-9180-7
  17. Mutka, A.M. and R.S. Bart. 2015. Image-based phenotyping of plant disease symptons. Front. Plant Sci. 5:1-8.10.3389/fpls.2014.0073425601871PMC4283508
  18. Na, S.I., C.W. Park, Y.K, Cheong, C.S. Kang, I.B. Choi, and K.D. Lee. 2016b. Selection of Optimal Vegetation Indices for Estimation of Barley & Wheat Growth based on Remote Sensing - An Application of Unmanned Aerial Vehicle and Field Investigation Data -. Korea. J. Remote Sensing 32(5):483-497 (in Korean).
  19. Na, S.I., S.Y. Hong, C.W. Park, K.D. Kim, and K.D. Lee. 2016a. Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors, Korean J. Soil Sci. Fert. 49(5):420-428 (in Korean).10.7745/KJSSF.2016.49.5.420
  20. Noh, T.H., K.Y. Kim, D.K. Lee, H.K. Shim, M.H. Kang, and J.C. Park. 2007. Disease incidence, yield and quality comparisons among rice varieties with different resistance to Bacterial Leaf Blight. Res. Plant Dis. 14(3):171-175(in Korean).10.5423/RPD.2008.14.3.171
  21. Park, J.K., H.J. Lee, J.W. Hwang. 2005. An analysis of adoption possibility for precision agriculture in Korean rice farms. Korean J. economics 46(4):1-23 (in Korean).
  22. Qin, Z. and M. Zhan. 2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 7:115-128.10.1016/j.jag.2005.03.004
  23. Torres-Sanchez J., J.M. Pena, A.I. de Castro and F. Lopez-Granados. 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 103:104-113.10.1016/j.compag.2014.02.009
  24. Xiang, H. and L. Tian, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 108(2):174-190.10.1016/j.biosystemseng.2010.11.010
  25. Yang, C.M. 2010. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Argric. 11:61-81.10.1007/s11119-009-9122-4
  26. Zhou, J. L.R. Khot, H.Y. Bahlol, R. Boydston, and P.N. Miklas. 2016. Evaluation of ground, proximal and aerial remote sensing technologies for crop stress monitoring. IFAC-Papers OnLine. 49-16:22-26.10.1016/j.ifacol.2016.10.005
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 51
  • No :4
  • Pages :360-368
  • Received Date :2018. 06. 08
  • Accepted Date : 2018. 11. 29