All Issue

2018 Vol.51, Issue 3 Preview Page
August 2018. pp. 159-168

Cadmium (Cd) uptake and accumulation from soil to plant vary depending on the environment conditions. Here, we studied the chemical properties of Cd-treated soils, the growth-inhibition rates of Cd-exposed oilseed rape plants, the changes in Cd content of soil, and the relationship between Cd bioconcentration factor and Cd accumulation from the soil to oilseed rape organs. Oilseed rape plants were cultivated in a greenhouse under four Cd treatments: 0 (control), 4, 8, and 12 mg kg-1. A significant positive correlation was found between Cd concentration and available P2O5 or exchangeable K. The Cd concentration for 25% shoot growth inhibition (GR75) was 8 mg kg-1. Cd content in the root and shoot was positively correlated in the flowering stage of oilseed rape. Bioconcentration factor (BCF)root/soil decreased with Cd concentration and Cd accumulation in the 8 mg kg-1 treatment was higher at flowering stage. Cd accumulation was related to plant biomass and soil Cd concentration. We found that Cd accumulation would be much greater in Cd concentrations that allowed plant growth and development. Thus, a species-specific threshold concentration must be determined based on Cd phytotoxicity for phytoremediation of Cd-contaminated soils.

Cd bioconcentration factors between soil and root or shoot (A) and Cd accumulations in roots and shoots of oilseed rape plants at flowering stage (B), and comparison of the bioconcentration factors between root and shoot tissues (figures at top of the columns).

  1. Arshad, M., S. Ali, A. Noman, Q. Ali, M. Rizwan, M. Farid, and M.K. Irshad. 2016. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch. Agron. Soil Sci. 62:533-546.10.1080/03650340.2015.1064903
  2. Cui, H., S. Zhang, R. Li, Q. Yi, X. Zheng, Y. Hu, and J. Zhou. 2017. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain. Environ. Sci. Pollut. Res. Int. 24(26):21128-21137.10.1007/s11356-017-9696-828730363
  3. Galiulin, R.V., V.N. Bashkin, R.R. Galiulina, and P. Birch. 2001. A critical review: Protection from pollution by heavy metals phytoremediation of industrial wastewater. Land Contamination Reclamation. 9:349-358.
  4. Gayomba, S.R., H.I. Jung, J. Yan, J. Danku, M.A. Rutzke, M. Bernal, U. Krämer, L.V. Kochian, D.E. Salt, and O.K. Vatamaniuk. 2013. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Metallomics. 5(9):1262-1275.10.1039/c3mt00111c23835944
  5. Hong, C.O., Y.G. Kim, S.M. Lee, H.C. Park, K.K. Kim, H.J. Son, J.H. Cho, and P.J. Kim. 2013. Liming effect on cadmium immobilization and phytoavailability in paddy soil affected by mining activity. Korean J. Environ. Agric. 32(1):1-8.10.5338/KJEA.2013.32.1.1
  6. Jalil, A., F. Selles, and J.M. Clarke. 1994. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J. Plant Nutr. 17:1839-1858.10.1080/01904169409364851
  7. Jan, A.T., M. Azam, K. Siddiqui, A. Ali, I. Choi, and Q.M. Haq. 2015. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16:29592-29630.10.3390/ijms16122618326690422PMC4691126
  8. Jeoung, Y.H., Y.N. Kim, K.R. Kim, and K.H. Kim. 2013. Physiological response and cadmium accumulation of MuS1 transgenic tobacco exposed to high concentration of Cd in soil: Implication to phytoremediation of metal contaminated soil. Korean J. Soil Sci. Fert. 46(1):58-64.10.7745/KJSSF.2013.46.1.058
  9. Jung, H.I., B.R. Lee, M.J. Chae, M.S. Kong, C.H. Lee, S.S. Kang, and Y.H. Kim. 2017a. Sulfur alleviates cadmium toxicity in rice (Oryza sativa L.) seedlings by altering antioxidant levels. J. Crop Sci. Biotech. 20(3):213-220.10.1007/s12892-017-0072-0
  10. Jung, H.I., J. Lee, M.J. Chae, M.S. Kong, C.H. Lee, S.S. Kang, and Y.H. Kim. 2017b. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environ. Monit. Assess.. 189:638.10.1007/s10661-017-6350-329147882PMC5691118
  11. Jung, H.I., M.J. Chae, M.S. Kong, S.S. Kang, and Y.H. Kim. 2016. Effect of rice straw compost on cadmium transfer and metal-ions distribution at different growth stages of soybean. Korean J. Soil Sci. Fert. 49(6):644-650.10.7745/KJSSF.2016.49.6.644
  12. Jung, H.I., M.J. Chae, S.J. Kim, M.S. Kong, S.S. Kang, D.B. Lee, H.J. Ju, and Y.H. Kim. 2015. Effects of cadmium and arsenic on physiological responses and copper and zinc homeostasis of rice. Korean J. Soil Sci. Fert. 48(5):397-403.10.7745/KJSSF.2015.48.5.397
  13. Kim, W.I., B.J. Park, S.W. Park, J.K. Kim, O.K. Kwon, G.B. Jung, J.K. Lee, and J.G. Kim. 2008. Relationship between fraction of Cd in paddy soils near closed mine and Cd in polished rice cultivated on the same fields. Korean J. Soil Sci. Fert. 41(3):184-189.10.1016/j.fertnstert.2008.07.745
  14. Kirkham, M.B. 2006. Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation and amendments. Geoderma. 37:19-32.10.1016/j.geoderma.2006.08.024
  15. Lee, H.H. and C.O. Hong. 2016. Phosphate associated cadmium immobilization mechanism depending on the original concentration of Cd in soil. Korean J. Soil Sci. Fert. 49(5):429-433.10.7745/KJSSF.2016.49.5.429
  16. Lee, H.H., V.N. Owens, S. Park, J. Kim, and C.O. Hong. 2018. Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium. Chemosphere. 206:369-375.10.1016/j.chemosphere.2018.04.17629754061
  17. Mengel, K. and E.A. Kirby. 1978. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  18. Meuwly, P. and W.E. Rauser. 1992. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium: adaptation and developmental cost. Plant Physiol. 99:8-15.10.1104/pp.99.1.816668887PMC1080398
  19. NIAS. 2000. Soil and plant analysis method. National Institute of Agricultural Science, RDA, Suwon, Korea.
  20. NIAS. 2010. Soil chemical analysis. National Institute of Agricultural Science, RDA, Suwon, Korea.
  21. Nagajyoti, P.C., K.D. Lee, and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8:199-216.10.1007/s10311-010-0297-8
  22. Park, S.W., J.S. Yang, S.W. Ryu, D.Y. Kim, J.D. Shin, W.I. Kim, J.H. Choi, and S.L. Kim. 2009. Uptake and translocation of heavy metals to rice plant on paddy soils in “Top-rice” cultivation areas. Korean J. Environ. Agic. 28(2):131-138.10.5338/KJEA.2009.28.2.131
  23. Petrov, V., J. Hille, B. Mueller-Roeber, and T.S. Gechev. 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6:69.10.3389/fpls.2015.0006925741354PMC4332301
  24. Raven, K.P. and R.H. Loeppert. 1997. Heavy metals in the environment: Trace element composition of fertilizers and soil amendments. J. Environ. Qual. 26:551-557.10.2134/jeq1997.00472425002600020028x10.2134/jeq1997.262551x
  25. Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology. 13:468-474.9634787
  26. Siddiqui, M.H., M.H. Al-Whaibi, A.M. Sakran, M.O. Basalah, and H.M. Ali. 2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int. J. Mol. Sci. 13(6):6604-6619.10.3390/ijms1306660422837652PMC3397484
  27. Singh, R.P. and M. Agrawal. 2010. Biochemical and physiological responses of rice (Oryza sativa L.) grown on different sewage sludge amendments rates. Bull. Environ. Contam. Toxicol. 84:606-612.10.1007/s00128-010-0007-z20414639
  28. Wang, L., Y. Li, H. Li, X. Liao, B. Wei, B. Ye, F. Zhang, L. Yang, W. Wang, and T. Krafft. 2014. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride. Environ. Monit. Assess. 186(12):9041-9050.10.1007/s10661-014-4064-325249043
  29. Wang, M., Q. Zheng, Q. Shen, and S. Guo. 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14:7370-7390.10.3390/ijms1404737023549270PMC3645691
  30. Yan, Y.F., D.H. Choi, D.S. Kim, and B.W. Lee. 2010a. Genotypic variation of cadmium accumulation and distribution in rice. J. Crop Sci. Biotechnol. 13:69-73.10.1007/s12892-010-0036-5
  31. Yan, Y.F., D.H. Choi, D.S. Kim, and B.W. Lee. 2010b. Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice. J. Crop Sci. Biotechnol. 13:113-119.10.1007/s12892-010-0045-4
  32. Yasin, N.A., M.M. Zaheer, W.U. Khan, S.R. Ahmad, A. Ahmad, A. Ali, and W. Akram. 2018. The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. Int. J. Phytoremediation. 20(3):274-283.10.1080/15226514.2017.137433729053340
  33. Yin, A., Z. Yang, S. Ebbs, J. Yuan, J. Wang, and J. Yang. 2016. Effects of phosphorus on chemical forms of Cd in plants of four spinach (Spinacia oleracea L.) cultivars differing in Cd accumulation. Environ. Sci. Pollut. Res. Int. 23(6):5753-5762.10.1007/s11356-015-5813-826585453
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 51
  • No :3
  • Pages :159-168
  • Received Date :2018. 04. 10
  • Accepted Date : 2018. 07. 31