All Issue

2020 Vol.53, Issue 4 Preview Page

Article

November 2020. pp. 600-613
Abstract
References
1
Backes, A.M., A. Aulinger, J. Bieser, V. Matthias, and M. Quante. 2016. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos Environ. 126:153-161. 10.1016/j.atmosenv.2015.11.039
2
Butterbach-Bahl, K., E.M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-Boltenstern. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci. 368:20130122. 10.1098/rstb.2013.012223713120PMC3682742
3
Cai, Z., G. Xing, X. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil. 196(1):7-14. 10.1023/A:1004263405020
4
Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8:559-568. 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
5
Conen, F., K. Dobbie, and K.A. Smith. 2000. Predicting N2O emissions from agricultural land through related soil parameters. Global Change Biol. 6(4):417-426. 10.1046/j.1365-2486.2000.00319.x
6
Fan, S. and M. Yoh. 2020. Nitrous oxide emissions in proportion to nitrification in moist temperate forests. Biogeochemistry. 148(3):223-236. 10.1007/s10533-020-00655-w
7
Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, and G. Myhre. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2, in Climate Change 2007. The Physical Science Basis, edited. Cambridge University Press, Cambridge, p. 129-234.
8
Garcia, J.L., B. Patel, and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205-226. 10.1006/anae.2000.034516887666
9
Gwon, H.S., G.Y. Kim, E.J. Choi, S.I. Lee, and J.S. Lee. 2019. Evaluation of greenhouse gas emission characteristics and intensity by management of water and nutrients in rice paddy soil during cropping season. J. Climate Change Res. 10(4):351-359. 10.15531/KSCCR.2019.10.4.351
10
Han, H.R., H.H. Lee, and C.O. Hong. 2019. Effect of incorporation of hairy vetch on nitrous oxide emission from soils cultivated with maize. K Korean J Environ Agric. 38(4):237-244. 10.5338/KJEA.2019.38.4.32
11
Hwang, J.Y., S.E. Jun, N.J. Park, J.S. Oh, Y.J. Lee, E.J. Sohn, and G.T. Kim. 2017. Growth-promoting effect of new iron-chelating fertilizer on lettuce. Journal of Life Science. 27(4):390-397. 10.5352/JLS.2017.27.4.390
12
IFA (International Fertilizer industry Association). 2011. www.fertilizer.org.
13
Kim, G.Y., K.H. So, H.C. Jeong, K.M. Shim, S.B. Lee, and D.B. Lee. 2010. Evaluation of N2O emissions with changes of soil temperature, soil water content and mineral N in red pepper and soybean field. Korean J. Soil Sci. Fert. 43(6):880-885.
14
Kim, G.Y., J. Gutierrez, H.C. Jeong, J.S. Lee, M.D.M. Haque, and P.J. Kim. 2014a. Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. J Korean Soc Appl Biol Chem. 57(2):229-236. 10.1007/s13765-013-4298-8
15
Kim, S.Y., P. Pramanik, J. Gutierrez, H.Y. Hwang, and P.J. Kim. 2014b. Comparison of methane emission characteristics in air-dried and composted cattle manure amended paddy soil during rice cultivation. Agric. Ecosyst. Environ. 197:60-67. 10.1016/j.agee.2014.07.013
16
Kim, S.C., M.S. Kim, S.J. Park, S.H. Kim, and C.H. Lee. 2018a. Estimation of nutrient balance in field crops applied with different fertilization. Korean J. Soil Sci. Fert. 51(4):427-434.
17
Kim, S.U., C. Ruangcharus, H.H. Lee, H.J. Park, and C.O. Hong. 2018b. Effect of application rate of composted animal manure on nitrous oxide emission from upland soil supporting for sweet potato. Korean J Environ Agric. 37(3):172-178. 10.5338/KJEA.2018.37.3.28
18
Ko, B.G., C.H. Lee, M.S. Kim, G.Y. Kim, S.J. Park, and S.G. Yun. 2016. Effect of soil respiration on light fraction C and N availability in soil applied with organic matter. Korean J. Soil Sci. Fert. 49(5):510-516. 10.7745/KJSSF.2016.49.5.510
19
Korean Statistics Information Service. 2015. https://kosis.kr/index/index.do.
20
Laakso, J., H. Setälä, and A. Palojärvi. 2000. Influence of decomposer food web structure and nitrogen availability on plant growth. Plant Soil. 225(1-2):153-165. 10.1023/A:1026534812422
21
Le Mer, J. and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37(1):25-50. 10.1016/S1164-5563(01)01067-6
22
Lee, S.B., Y.M. Kim, J.K. Sung, Y.J. Lee, and D.B. Lee. 2018. Characteristics of growth-stage-based nutrient uptake of lettuce grown by fertigation supply in a greenhouse. Korean J. Soil Sci. Fert. 51(4):626-635.
23
Lee, S.B., Y.M. Kim, Y.J. Lee, Y.S. Song, D.B. Lee, and J. Sung. 2019a. Growth stage-based fertigation guideline for greenhouse spring Chinese cabbage. Korean J. Soil Sci. Fert. 52(4):429-437.
24
Lee, S.I., C.K. Lee, G.Y. Kim, H.S. Gwon, J.S. Lee, E.J. Choi, and J.D. Shin. 2019b. Analysis of research trends in nitrous oxide emissions from upland in Korea. Korean J. Soil Sci. Fert. 52(4):307-317.
25
Lim, C.H., S.Y. Kim, and P.J. Kim. 2011. Effect of gypsum application on reducing methane (CH4) emission in a reclaimed coastal paddy soil. Korean J Environ Agric. 30(3):243-251. 10.5338/KJEA.2011.30.3.243
26
MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2017. https://www.mafra.go.kr/english/index.do.
27
Masunga, R.H., V.N. Uzokwe, P.D. Mlay, I. Odeh, A. Singh, D. Buchan, and D.N. Stefaan. 2016. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol. 101:185-193. 10.1016/j.apsoil.2016.01.006
28
Mosier, A.R., W.J. Parton, and S. Phongpan. 1998. Longterm large N and immediate small N additions effects on trace gas fluxes in the Colorado shortgrass steppe. Biol. Fertil. Soils. 28:44-50. 10.1007/s003740050461
29
Nair, A. and M. Ngouajio. 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl Soil Ecol. 58:45-55. 10.1016/j.apsoil.2012.03.008
30
NAS (National Institute of Agricultural Science). 2017. Fertilizer recommendation for crops. Third edition. Rural Development Administration, Wanju, Korea.
31
Nayak, D.R., Y.J. Babu, and T.K. Adhya. 2007. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition, Soil Biol. Biochem. 39(8):1897-1906. 10.1016/j.soilbio.2007.02.003
32
NIAST (National Institute of Agricultural Science and Technology). 1988. Methods of soil chemical analysis. National institute of agricultural science and technology, RDA, Suwon, Korea.
33
NIAST (National Institute of Agricultural Science and Technology). 1999. Fertilization standard of crop plants. National institute of agricultural science and technology, RDA, Suwon, Korea.
34
Park, H.S., K.H. Lee, H.K. Oh, C.W Kim, H.J. Kang, S.H. Choi, and H.M Shin. 2020. Effect of organic materials amendment on growth of jujube (Zizyphus jujuba Mill.) and soil chemical properties. Korean J. Soil Sci. Fert. 53(3):277-286.
35
Parkin, T.B. and T.C. Kaspar. 2006. Nitrous oxide emissions from corn-soybean systems in the Midwest. J Environ Qual. 35(4):1496-1506. 10.2134/jeq2005.018316825470
36
RDA (Rural Development Administration). 2012. Standard investigation methods for agriculture experiment. p. 313-756.
37
Rolston, D.E. 1986. Gas flux. Methods of soil analysis: Part 1-Physical and mineralogical methods. sssabookseries. p. 1103-1119. 10.2136/sssabookser5.1.2ed.c47
38
Searle, P.L. 1984. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst. 109(5):549-568. 10.1039/an9840900549
39
Sehy, U., R. Ruser, and J.C. Munch. 2003. Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric. Ecosyst. Environ. 99(1-3):97-111. 10.1016/S0167-8809(03)00139-7
40
Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2:587. 10.1186/2193-1801-2-58725674415PMC4320215
41
Singh, S., J.S. Singh, and A.K. Kashyap. 1999. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 31:1219-1228. 10.1016/S0038-0717(99)00027-9
42
Sozanska, M., U. Skiba, and S. Metcalfe. 2002. Developing an inventory of N2O emissions from British soils. Atmos Environ. 36(6):987-998. 10.1016/S1352-2310(01)00441-1
43
Wolf, B. 1944. Determination of nitrate, nitrite, and ammonium nitrogen rapid photometric determination in soil and plant extracts. Ind. Eng. Chem. Res. 16(7):446-447. 10.1021/i560131a013
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 53
  • No :4
  • Pages :600-613
  • Received Date :2020. 11. 02
  • Revised Date :2020. 11. 18
  • Accepted Date : 2020. 11. 24