All Issue

2018 Vol.51, Issue 3 Preview Page
August 2018. pp. 274-288

Recently Korea has severe drought during sowing and early vegetative period of sesame cultivation. Sesame is an important oilseed crop in Korea, so it is important to understand adaptation of sesame to water stress. This study investigated changes of morphological properties and spatial distribution of sesame roots under different soil moisture contents. The experiment was performed at University of Florida in Gainsville, USA. Two sesame cultivars (Bene and Indie) were planted in a test tube with 35 in length, 21 in width, and 4 cm in depth and grew for 23 days. The tubes were filled with turface soil with four soil moisture treatments (40, 50, 75 and 100%). The root images were obtained every 2 days using a scanner. Root properties from the images were characterized by root length, surface area, volume, number of roots and fractal parameters (fractal dimension and lacunarity). The results of this study showed that the all of root properties had no significant difference between cultures, but there was difference across soil moisture contents. The total length, surface area, volumes and number of roots increased as soil moisture increased from both cultivars. The values of fractal dimension increased as soil moisture increased, while the ones of lacunarity decreased. These results indicated that greater soil moisture induced more abundant and heterogeneous root structure. Correlation analysis among morphological properties and fractal parameters resulted in that the fractal dimension had the greatest correlation with number of roots. This result indicates that fractal dimension is strongly related to branching of roots. Sesame roots from soil moisture of 40 and 50% did not develop enough to have fractal root structure. Sesame roots are sensitive to soil moisture content in germination and early vegetative stage and they require soil moisture close to 100% to develop full root structure. These results would be useful to understand sesame responses to water stress and to manage irrigation amounts in sesame cultivation.

Sesame (Bene and Indie) root images from four soil moisture treatments: a-40%, b-50%, c-75% and d-100% soil moisture content.

  1. Ashri, A. 1998. Sesame breeding. Plant Breed. Rev. 16:179-228.
  2. Bahrami, H., J. Razmjoo, and A.O. Jafari. 2012. Effect of drought stress on germination and seedling growth of sesame cultivars (sesamum indicum L.). Int. J. Agri. 2(5):423-428.
  3. Bedigian, D. 2011. Sesame, The genus sesamum. CRC Press, Taylor & Francis Group, NW, USA.
  4. Benjamin, J.G. and D.C. Nielsen. 2006. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 97(2-3):248-253.10.1016/j.fcr.2005.10.005
  5. Bengough, A.G., B.M. McKenzie, P.D. Hallett, and T.A. Valentine. 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62(1):59-68.10.1093/jxb/erq35021118824
  6. Bruno, O.M., R. de Oliveria-Plotze, M. Falvo, and M. de Castro. 2008. Fractal dimension applied to plant identification. Information Sci. 178(12):2722-2733.10.1016/j.ins.2008.01.023
  7. Burrough, P.A. Fractal dimensions of landscapes and other environmental data. Nature. 294:240-242.10.1038/294240a0
  8. Cai, G., J. Vanderborght, V. Covreur, C.M. Mboh and H. Vereecken. 2017. Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vad. Zone J. 17(1):1-21.
  9. Chandra, M. and M. Rani. 2009. Categorization of fractal plants. Chaos, Solitons & Fractals. 41(3):1442-1447.10.1016/j.chaos.2008.05.024
  10. Chun, H.C., D. Gimenez, and S.W. Yoon. 2008. Morphology, lacunarity and entropy of intra-aggregate pores: aggregate size and soil management effects. Geoderma. 146(1-2):83-93.10.1016/j.geoderma.2008.05.018
  11. Chun, H.C., K.Y. Jung, Y.D. Choi, S.H. Lee, and H.W. Kang. 2016. The growth and yield changes of foxtail millet (setaria italic L.), proso millet (Panicum miliaceum L.), sorghum (Sorghum bicolor L.), adzuki bean (Vigna angularis L.), and sesame (sesamum indicum L.) as affected by excessive soil - water. Korean J. Agri. Sci. 43(4):547- 559.[in Korean]
  12. Chun, H.C., K.Y. Jung, Y.D. Choi, and S. Lee. 2017. Improved method of suitability classification for sesame (sesamum indicum L) cultivation in paddy field soils. Korean J. Soil Sci. Fert. 50(6):520-529.[in Korean]
  13. Eghball, B., J.R. Settimi, J.W. Maranville, and A.M. Parkhust. 1993. Fractal analysis for morphological description of corn roots under nitrogen stress. Agr. Journal. 85:287-289.10.2134/agronj1993.00021962008500020023x
  14. Fitter, A.H. and T.R. Stickland. 1992. Fractal characterization of root system architecture. Func. Eco. 6(6):632-635.10.2307/2389956
  15. Food and Agriculture Organization of the United Nations (FAOSTAT Database), 2012. faostat-gateway/go/to/home/E Accrssed on 16 Aprils 2018.
  16. Fukai, S. and M. Cooper. 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop. Res. 40(2):67-86.10.1016/0378-4290(94)00096-U
  17. Gimenez, D., J.L. Karmon, A. Posadas, and R.K. Shaw. 2002. Fractal dimensions of mass estimated from intact and eroded soil aggregates. Soil. Til. Res. 64(1-2):165-172. Chapter 13.
  18. Guo, R., W.P. Hao, D.Z. Gong, X.L. Zhong, and F.X. Gu. 2013. Effects of water stress on germination and growth of wheat, photosynthetic efficiency and accumulation of metabolites. Soil Processes and Current Trends in Quality Assessment, (Ed.) M. C. H. Soriano, InTech, DOI:10.5772/51205.10.5772/51205
  19. Hauck, A., J. Novais, T.E. Grift, and M.O. Bohn. 2015. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus. 4:424.10.1186/s40064-015-1187-026290803PMC4537857
  20. Jiang, W., C. Ji, and H. Zhu. 2009. Fractal study on plant classification and identification. International Workshop on Chaos-Fractals Theories and Applications. 434-438.10.1109/IWCFTA.2009.98
  21. Kassab, O.M., A.A. El-Noemani, and H.A. El-Zeiny. 2005. Influence of some irrigation systems and water regimes on growth and yield of sesame plants. J. Agr. 4(3):220-224.10.3923/ja.2005.220.224
  22. Kashiwagi, J., L. Krishnamurthy, J.H. Crouch, and R. Serraj. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crop. Res. 95(2-3):171-181.
  23. Kim, D.H. 2016. Review of relation between drought occurrence in Korea and climate changes. Water for future, vol 49, no 6, 57~60.[in Korean]
  24. Klinkenberg, B. 1994. A reviews of methods used to determine the fractal dimension of linear features. Math. Geo. 26(1):23-46.10.1007/BF02065874
  25. Li, K.Y., R.D. Jong, M.T. Coe, and N. Ramankutty. 2006. Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function. Earth Inter. 10. 1-22.10.1175/EI177.1
  26. Mensah, J.K., B.O. Obadoni, P.G. Eroutor, and F. Onome-Irieguna. 2006. Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L.). African J. Bio. 5:1249-1253.
  27. Nielsen, K.L., J.P. Lynch, and H.N. Weiss. 1997. Fractal geometry of bean root systems: correlations between spatial and fractal dimension. American J. Bot. 84(1). 26-33.10.2307/244587911539495
  28. Osonubi, O. 1985. Responses of cowpeas (Vigna unguiculata (L.) Walp.) to progressive soil drought. Oecologia. 66(4). 554-557.10.1007/BF0037934928310798
  29. Pozdnyakova, L,D. Gimenez, and P.V. Oudemans. 2005. Spatial analysis of cranberry yield at three scales. Agron. J. 97 (1):49-57.10.2134/agronj2005.0049
  30. Pierce, S.M.B. Koontz, S.R. Pezeshki, and R. Kroger. 2012. Response of Salix nigra [Marsh.] cutting to horizontal asymmetry in soil saturation. Environ. Experi. Botany. 87:137-147.10.1016/j.envexpbot.2012.10.003
  31. Price, A.H., K.A. Steele, J. Gorham, J. M. Bridges, B. J. Moore, J. L. Evans, P. Richardson, and R.G.W. Jones. 2002. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: I. Root distribution, water use and plant water status. Field Crop. Res. 76(1):11-24.10.1016/S0378-4290(02)00012-6
  32. Rubini, S., S.J. Bharathi, B. Latha, and A. Seethalakshmy. Estimation of fractal dimension in the analysis of single abnormal gene structure. Taga J. 14:775-751.
  33. Sadeghian, S.Y. and N. Yavari. 2004. Effect of water-deficit stress on germination and early seedling growth in sugar beet. J. Agr. Crop Sci. 190:138-144.10.1111/j.1439-037X.2004.00087.x
  34. Shi, X., J. Pan, Q. Hou, Y. Jin, Z. Wang, Q. Niu, and M. Li. 2018. Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory. Fuel. 215:162-172.10.1016/j.fuel.2017.09.115
  35. Shim, K.B., C.D. Hwang, S.B. Pae, and M.H. Lee. 2010. Comparison of physiochemical characters of sesame seeds according to the different producing origin. J. Korean Soc. Inter. Agr. 29(4):350-355.
  36. Smith Jr, T. G., G. D. Lange and W. B. Marks. 1996. Fractal methods and results in cellular morphology-dimensions, lacunarity and multifractals. J. Neur. Meth. 69(2):123-136.10.1016/S0165-0270(96)00080-5
  37. Tantawy, M. M., S. A. Ouda and F. A. Khalil. 2007. Irrigation optimization for different sesame varieties grown under water stress conditions. J. Appl. Sci. Res. 3:7-12.
  38. Tarquis, A. M., D. Gimenez, A. Saa, M. C. Diaz and J. M. Gasco. 2003. Scaling and multiscaling of soil pore systems determined. Chapter 2, Scaling Methods in Soil Physics, (eds) Pachepsky Y., D. E. Radcliffw and H. M. Selim. CRC Press, Newyork.
  39. Tatsumi, J., A. Yamauchi and Y. Kono. 1989. Fractal analysis of plant root systems. Annals of Botany. 64(5):499-503.10.1093/oxfordjournals.aob.a087871
  40. Tatsumi, J. 1995. Fractal geometry in root systems: quantitative evaluation of distribution pattern. Japanese Crop J. 64(1):50-57.10.1626/jcs.64.50
  41. Uçan K, Killi F, Gençoglan C, Merdun H. 2007. Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. Field Crop. Res. 101:249-258.10.1016/j.fcr.2006.11.011
  42. Walk, T. C., E. V. Erp and J. P. Lynch. 2004. Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Annals. Bot. 94(1):119-128.10.1093/aob/mch11615145791PMC4242372
  43. Wang, H., J. Siopongco, L. Wade and A. Yamauchi. 2009. Fractal analysis on root systems of rice plants in response to drought stress. Envir. Experi. Bot. 65(2-3):338-344.10.1016/j.envexpbot.2008.10.002
  44. Whalley, W. R., A. G. Bengough and A. R. Dexter. 1998. Water stress induced by PEG decreases the maximum growth pressure of the roots of pea seedlings. J. Experi. Bot. 49(327):1689-1694.10.1093/jxb/49.327.1689
  45. Zhang, J. and W. J. Davies. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant, Cell. Envi. 12(1):73-81.10.1111/j.1365-3040.1989.tb01918.x
  46. Zeng, Y., R. L. Payton, C. J. Gantzer and S. H. Anderson. Fractal dimension and lacunarity of bulk density determined with x-ray computed tomography. Soil Sci. Soc. Am. J. 60(6):1718-1724.10.2136/sssaj1996.03615995006000060016x
  47. Zuo, R. 2018. A fractal measure of mass transfer in fluid-rock interaction. Ore Geol. Rev. 95:569-574.10.1016/j.oregeorev.2018.03.008
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 51
  • No :3
  • Pages :274-288
  • Received Date :2018. 07. 26
  • Accepted Date : 2018. 08. 31