All Issue

2020 Vol.53, Issue 4 Preview Page

Article

November 2020. pp. 575-588
Abstract
References
1
Al-Shammary, A.A.G., A.Z. Kouzani, A. Kaynak, S.Y. Khoo, M. Norton, and W. Gates. 2018. Soil bulk density estimation methods: A Review. Pedosphere 28:581-596. 10.1016/S1002-0160(18)60034-7
2
Andersson, S. and S.I. Nilsson. 2001. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol. Biochem. 33:1181-1191. 10.1016/S0038-0717(01)00022-0
3
Anitha, K. and G. Bindu. 2016. Effect of controlled-release nitrogen fertilizer on methane emission from paddy field soil. Procedia Technology 24:196-202. 10.1016/j.protcy.2016.05.027
4
Azeem, B., K. KuShaari, Z.B. Man, A. Basit, and T.H. Thanh. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. J. Controll. Release 181:11-21. 10.1016/j.jconrel.2014.02.02024593892
5
Baggs, E. and L. Philippot. 2010. Microbial terrestrial pathways to N2O. (Ed.), Springer Netherlands, Dordrecht.
6
Blake, G.R. 2008. Particle density. In: Chesworth, W. (Ed.), Encyclopedia of Soil Science. Springer Netherlands, Dordrecht, pp. 504-505. 10.1007/978-1-4020-3995-9_40619022071
7
Cai, Y., Y. Zheng, P.L.E. Bodelier, R. Conrad, and Z. Jia. 2016. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications 7:11728. 10.1038/ncomms1172827248847PMC4895445
8
Chatskikh, D. and J.E. Olesen. 2007. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil Tillage Res. 97:5-18. 10.1016/j.still.2007.08.004
9
Cho, H.S., M.C. Seo, J.H. Kim, W.G. Sang, P. Shin, and J. Baek. 2019. Effect of Organic amendments on rice yield and soil carbon fraction in paddy soil. Korean J. Soil. Sci. Fert. 52:448-456.
10
GIR (Greenhouse Gas Inventory and Research Center). 2019. National Inventory Report in Korea. Greenhouse Gas Inventory and Research Center. Seoul, Korea.
11
Greenwood, D.J. 1961. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil. 14:360-376. 10.1007/BF01666294
12
Gutierrez, J., S.L. Atulba, G. Kim, and P.J. Kim. 2014. Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions. Biol. Fertil. Soils 50:861-868. 10.1007/s00374-014-0904-0
13
Gwon, H.S., M.I. Khan, Y.E. Yoon, Y.B. Lee, P.J. Kim, and H.Y. Hwang. 2019. Unexpected higher decomposition of soil organic matter during cold fallow season in temperate rice paddy. Soil Tillage Res. 192:250-257. 10.1016/j.still.2018.11.009
14
Haque, M.M., G.W. Kim, P.J. Kim, and S.Y. Kim. 2016. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crops Res. 193:133-142. 10.1016/j.fcr.2016.04.007
15
Haque, M.M., S.Y. Kim, M.A. Ali, and P.J. Kim. 2015. Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 387:251-264. 10.1007/s11104-014-2287-2
16
Huang, Y., C. Wang, C. Lin, Y. Zhang, X. Chen, L. Tang, C. Liu, Q. Chen, M.I. Onwuka, and T. Song. 2019. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Scientific Reports 9:17277. 10.1038/s41598-019-53044-131754121PMC6872536
17
IPCC (Intergovernmental Panel on Climate Change). 2007. Technical summary. In: Climate change: the physical science basis. Contribution of Working Group 1 to the Forth Assessment report of the intergovernmental panel on climate change. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, Tignor, M., Miller, H.L. (Eds.), pp. 996-1007.
18
Jeong, H.C., E.J. Choi, J.S. Lee, G.Y. Kim, and S.I. Lee. 2018. Comparison of CH4 emission between auto chamber and manual chamber in the rice paddy. J. Climate Change Res. 9(4):377-384. 10.15531/KSCCR.2018.9.4.377
19
Ji, Y., G. Liu, J. Ma, G. Zhang, H. Xu, and K. Yagi. 2013. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant Soil 371:473-486. 10.1007/s11104-013-1700-6
20
Kim, G.W., S.T. Jeong, P.J. Kim, and H.S. Gwon. 2017. Influence of nitrogen fertilization on the net ecosystem carbon budget in a temperate mono-rice paddy. Geoderma 306:58-66. 10.1016/j.geoderma.2017.07.008
21
Lee, J.S., H.J. Lee, and J.H. Seo. 2002. Decomposition and N release of hairy vetch applied as a green manure and its effects on rice yield in paddy field. Korean J. Crop Sci. 47:137-141.
22
Lee, K.B., C.W. Park, K.L. Park, J.G. Kim, D.B. Lee, and J.D. Kim. 2005. Nitrogen balance in paddy soil of control-release fertilizer application. Korean J. Soil. Sci. Fert. 38:157-163.
23
LeMonte, J.J., V.D. Jolley, J.S. Summerhays, R.E. Terry, and B.G. Hopkins. 2016. Polymer coated urea in turfgrass maintains vigor and mitigates nitrogen's environmental impacts. PLoS One 11:e0146761. 10.1371/journal.pone.014676126764908PMC4713148
24
Lin, S., J. Iqbal, R. Hu, M. Shaaban, J. Cai, and X. Chen. 2013. Nitrous oxide emission from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: A case study in central china. Arch. Enbiron. Contam. Toxicol. 65:183-192. 10.1007/s00244-013-9903-723609028
25
Linn, D.M. and J.W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48:1267-1272. 10.2136/sssaj1984.03615995004800060013x
26
Lopes de Gerenyu, V., I. Kurganova, L. Rozanova, and V. Kudeyarov. 2005. Effect of soil temperature and moisture on CO2 evolution rate of cultivated Phaeozem: Analysis of a long-term field experiment. Plant Soil Environ. 51. 10.17221/3576-PSE
27
Ma, K. and Y. Lu. 2011. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol. Ecol. 75:446-456. 10.1111/j.1574-6941.2010.01018.x21198683
28
Müller, M.M. 1987. Leaching of subterranean clover-derived N from a loam soil. Plant Soil 102:185-191. 10.1007/BF02370701
29
NAAS (National Institute of Agricultural Sciences). 2020. Agricultural weather information service 365. http://weather.rda.go.kr.
30
NAAS (National Institute of Agricultural Sciences). 2010a. Fertilizer application recommendations for crop plants. National Academy of Agricultural Science, RDA, Suwon, Korea.
31
NAAS (National Institute of Agricultural Sciences). 2010b. Method of soil and plant analysis. National Academy of Agricultural Science, NAAS, RDA, Suwon, Korea.
32
Oo, A.Z., S. Sudo, T. Fumoto, K. Inubushi, K. Ono, A. Yamamoto, S.D. Bellingrath-Kimura, K.T. Win, C. Umamageswari, K.S. Bama, M. Raju, K. Vanitha, P. Elayakumar, V. Ravi, and V. Ambethgar. 2020. Field validation of the DNDC-rice model for methane and nitrous oxide emissions from double-cropping paddy rice under different irrigation practices in Tamil Nadu, India. Agriculture 2020. 10:355. 10.3390/agriculture10080355
33
Peng, Y.J. 2013. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice. Journal of Plant Nutrition Fertilizer.
34
Pittelkow, C.M., M.A. Adviento-Borbe, C. van Kessel, J.E. Hill, and B.A. Linquist. 2014. Optimizing rice yields while minimizing yield-scaled global warming potential. Glob. Chang. Biol. 20:1382-1393. 10.1111/gcb.1241324115565
35
Rolston, D.E. 1986. Gas flux. Methods of soil analysis. Soil Sci Soc Am J. p. 1103-1119. 10.2136/sssabookser5.1.2ed.c47
36
Sarrantonio, M. and T.W. Scott. 1988. Tillage effects on availability of nitrogen to corn following a winter green manure crop. Soil Sci. Soc. Am. J. 52:1661-1668. 10.2136/sssaj1988.03615995005200060029x
37
Schjønning, P., I.K. Thomsen, P. Moldrup, and B.T. Christensen. 2003. Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Sci. Soc. Am. J. 67:156-165. 10.2136/sssaj2003.1560
38
Singh, Y., B. Singh, O.P. Meelu, and M.S. Maskina. 1990. Nitrogen equivalence of green manure for wetland rice on coarse-textured soils. Int. Rice Res. Newsl. 15:23.
39
Skopp, J., M.D. Jawson. and J.W. Doran. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54:1619-1625. 10.2136/sssaj1990.03615995005400060018x
40
Statistics Korea. 2020. Annual report on the area of arable land statistics 2020. http://www.kosis.kr/.
41
Syakila, A. and C. Kroeze. 2011. The global nitrous oxide budget revisited. greenh. Gas Meas. Manag. 1:17-26. 10.3763/ghgmm.2010.0007
42
Tang, S.H., S.H. Yang, J.S. Chen, P.Z. Xu, F.B. Zhang, A.I. Shao-ying, and X. Huang. 2007. Studies on the mechanism of single basal application of controlled-release Fertilizers for increasing yield of rice (Oryza safiva L.). Agr. Sci. China 6:586-596. 10.1016/S1671-2927(07)60087-X
43
Ussiri, D. and R. Lal. 2012. Soil Emission of Nitrous Oxide and its Mitigation. Springer Netherlands. 10.1007/978-94-007-5364-8
44
Utomo, M., W.W. Frye, and R.L. Blevins. 1990. Sustaining soil nitrogen for corn using hairy Vetch cover crop. Agron. J. 82:979-983. 10.2134/agronj1990.00021962008200050028x
45
Van Groenigen, J.W., G.L. Velthof, O. Oenema, K.J. Van Groenigen, and C. Van Kessel. 2010. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Biol. 61:903-913. 10.1111/j.1365-2389.2009.01217.x
46
Varco, J.J., W.W. Frye, M.S. Smith, and C.T. MacKown. 1989. Tillage effects on nitrogen recovery by corn from a nitrogen-15 labeled legume cover crop. Soil Sci. Soc. Am. J. 53:822-827. 10.2136/sssaj1989.03615995005300030033x
47
Zhou, W.L., Y.S. Lou, L. Ren, H. Yan, M. Yan, and W. Lei. 2014. Application of controlled-release nitrogen rertilizer decreased methane emission in transgenic rice from a paddy Soil. Water Air Soil Pollut. 225:1-5. 10.1007/s11270-014-1897-x
48
Zhu, X., M. Burger, T.A. Doane, and W.R. Horwath. 2013. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. U.S.A. 110:6328-6333. 10.1073/pnas.121999311023576736PMC3631630
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 53
  • No :4
  • Pages :575-588
  • Received Date :2020. 11. 02
  • Revised Date :2020. 11. 28
  • Accepted Date : 2020. 11. 30