All Issue

2018 Vol.51, Issue 4 Preview Page

November 2018. pp. 377-387
Abstract


References
1 

Aber, J.D., J.M. Mellilo, and C.A. McClaugherty. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can. J. Bot. 68:2201-2208.

10.1139/b90-287
2 

Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439-449.

10.2307/3546886
3 

Aponte, C., L.V. García, and T. Maro-ón. 2012. Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems 15:1204-1218.

10.1007/s10021-012-9577-4
4 

Aponte, C., T. Mara-ón, and L.V. García. 2010. Microbial C, N and P in soils of Mediterranean oak forest: influence of season, canopy cover and soil depth. Biogeochemistry 101:77-92.

10.1007/s10533-010-9418-5
5 

Archibald, F., and B. Roy. 1992. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Appl. Environ. Microbiol. 58:1496-1499.

1622216PMC195631
6 

Bahri, H., D.P. Rasse, C. Rumpela, M.F. Dinaca, G. Bardouxa, and A. Mariotti. 2008. Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biol. Biochem. 40:1916-1922.

10.1016/j.soilbio.2008.04.002
7 

Berg, B. 1986. Nutrient release from litter and humus in coniferous forest soils - a mini review. Scand. J. Forest Res. 1:359-369.

10.1080/02827588609382428
8 

Berg, B. 2014. Decomposition patterns for foliar litter - A theory for influencing factors. Soil Biol. Biochem. 78:222-232.

10.1016/j.soilbio.2014.08.005
9 

Berg, B., and C. McClaugherty. 2008. Plant litter - Decomposition, humus formation, carbon sequestration. Springer, Berlin, Germany.

10 

Bertrand, I., O. Delfosse, and B. Mary. 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects. Soil Biol. Biochem. 39:276-288.

10.1016/j.soilbio.2006.07.016
11 

Bonan, G.B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.

10.1126/science.115512118556546
12 

Chadwick, D.R., P. Ineson, C. Woods, and T.G. Piearce. 1998. Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol. Biochem. 30:47-55.

10.1016/S0038-0717(97)00090-4
13 

Cheever, B.M., J.R. Webster, E.E. Bilger, and S.A. Thomas. 2013. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614-1625.

10.1890/12-1339.123951721
14 

Choi, W.J., and S.X. Chang. 2005. Nitrogen dynamics in co-composted drilling waste: effects of compost quality and 15N fertilization. Soil Biol. Biochem. 37:2297-2305.

10.1016/j.soilbio.2005.04.007
15 

Cortez, J., E. Garnier, N. Pérez-Harguindeguy, M. Debussche, and D. Gillon. 2007. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19-34.

10.1007/s11104-007-9285-6
16 

Cotrufo, M.F., M.D. Wallenstein, C.M. Bot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19:988-995.

10.1111/gcb.1211323504877
17 

Davidson, E.A., and I.A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173.

10.1038/nature0451416525463
18 

Davey, M.P., B. Berg, B.A. Emmett, and P. Rowland. 2007. Decomposition of oak leaf litter is related to initial litter Mn concentrations. Can. J. Bot. 85:16-24.

10.1139/b06-150
19 

Dijkstra, F.A., E. Pendall, J.A. Morgan, D.M. Blumenthal, Y. Carrillo, D.R. LeCain, R.F. Follett, and D.G. Williams. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 196:807-815.

10.1111/j.1469-8137.2012.04349.x23005343
20 

Doane, T.A., and W.R. Horwáth. 2003. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 36:2713-2722.

10.1081/AL-120024647
21 

Emmer, I.M., and A. Tietema. 1990. Temperature-dependent nitrogen transformations in acid oak-beech forest litter in the Netherlands. Plant Soil 122:193-196.

10.1007/BF02851974
22 

Eriksson, K.E., R.A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Germany.

10.1007/978-3-642-46687-8
23 

Fog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63:433-462.

10.1111/j.1469-185X.1988.tb00725.x
24 

Frey, S.D., M. Knorr, J.L. Parrent, and R.T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manage. 196:159-171.

10.1016/j.foreco.2004.03.018
25 

Gahrooee, F.R. 1998. Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Glob. Change Biol. 4:667-677.

10.1046/j.1365-2486.1998.00187.x
26 

Heim, A., and M.W.I. Schmidt. 2006. Lignin turnover in arable soil and grassland analysed with two different labeling approaches. Eur. J. Soil Sci. 58:599-608.

10.1111/j.1365-2389.2006.00848.x
27 

Hobbie, S.E., W.C. Eddy, C.R. Buyarski, E.C. Adair, M.L. Ogdahl, and P. Weisenhorn. 2012. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82:389-405.

10.1890/11-1600.1
28 

Hobbie, S.E., P.B. Reich, J. Oleksyn, M. Ogdahl, R. Zytkowiak, C. Hale, and P. Karolewski. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288-2297.

10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2
29 

King, H.G.C., and G.W. Heath. 1967. The chemical analysis of small samples of leaf material and the relationship between the disappearance and composition of leaves. Pedobiologia 7:192-197.

30 

Kirschbaum, M.U.F. 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21-51.

10.1023/A:1006238902976
31 

Klotzbücher, T., K. Kaiser, G. Guggenberger, C. Gatzek, and K. Kalbitz. 2011. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052-1062.

10.1890/10-1307.121661566
32 

Knorr, M., S.D. Frey, and P.S. Curtis. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252-3257.

10.1890/05-0150
33 

Kuo, S. 1996. Phosphorus. p. 869-919. In D.L. Sparks et al. (ed.) Methods of soil analysis. Part 3: Chemical methods. ASA and SSSA, Madison, USA.

34 

Kuzyakov, Y., J.K. Friedel, and K. Stahr. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32:1485-1498.

10.1016/S0038-0717(00)00084-5
35 

Kwak, J.H., W.J. Choi, S.S. Lim, and M.A. Arshad. 2009. δ13C, δ15N, N concentration, and Ca-to-Al ratios of forest samples from Pinus densiflora stands in rural and industrial areas. Chem. Geol. 264:385-393.

10.1016/j.chemgeo.2009.04.002
36 

Lee, S.I., S.S. Lim, K.S. Lee, J.H. Kwak, J.W. Jung, H.M. Ro, and W.J. Choi. 2011. Kinetics responses of soil carbon dioxide emission to increasing urea application rate. Korean J. Environ. Agric. 30:99-104.

10.5338/KJEA.2011.30.2.99
37 

Lim, S.S., K.S. Lee, S.I. Lee, D.S. Lee, J.H. Kwak, X. Hao, H.M. Ro, and W.J. Choi. 2012. Carbon mineralization and retention of livestock manure composts with different substrate qualities in three soils. J. Soil Sediments 12:312-322.

10.1007/s11368-011-0458-9
38 

MacDonald, N.W., D.R. Zak, and K.S. Pregitzer. 1995. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci. Soc. Am. J. 59:233-240.

10.2136/sssaj1995.03615995005900010036x
39 

Manzoni, S., J.A. Trofymow, R.B. Jackson, and A. Porporato. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 80:89-106.

10.1890/09-0179.1
40 

Melillo, J.M., J.D. Aber, and J.M. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 69:621-626.

10.2307/1936780
41 

Mulvaney, R.L. 1996. Nitrogen - Inorganic forms. p. 1123-1184. In D.L. Sparks et al. (ed.) Methods of soil analysis. Part 3: Chemical methods. ASA and SSSA, Madison, USA.

42 

Nelson, D.W., and L.E. Sommer. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In D.L. Sparks et al. (ed.) Methods of soil analysis. Part 3: Chemical methods. ASA and SSSA, Madison, USA.

43 

Norby, R.J., M.F. Cotrufo, P. Ineson, E.G. O'Neill, and J.G. Canadell. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153-165.

10.1007/s00442000061524577644
44 

Osono, T., J. Azuma, and D. Hirose. 2014. Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pin and oak forest soils. Plant Soil 376:411-421.

10.1007/s11104-013-1993-5
45 

Osono, T., and H. Takeda. 2004. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19:593-602.

10.1111/j.1440-1703.2004.00675.x
46 

Park, H.J. 2016. Climatic and soil environmental changes effects on litter quality and decomposition of coniferous and deciduous trees. Master's thesis. Chonnam National University, Gwangju, Korea.

47 

Park, H.J., S.S. Lim, J.H. Kwak, H.I. Yang, K.S. Lee, Y.H. Lee, H.Y. Kim, and W.J. Choi. 2018. Elevated CO2 concentration affected pine and oak litter chemistry and the respiration and microbial biomass of soils amended with these litters. Biol. Fertil. Soils 54:583-594.

10.1007/s00374-018-1282-9
48 

Perez, J., and T.W. Jeffries. 1992. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Envrion. Microbiol. 58:2402-2409.

1514788PMC195794
49 

Pérez-Harguindeguy, N., S. Díaz, J.H.C. Cornelissen, F. Vendramini, M. Cabido, and A. Castellanos. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21-30.

10.1023/A:1014981715532
50 

Prescott, C. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133-149.

10.1007/s10533-010-9439-0
51 

Qualls, R.G., and C.J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Sci. Soc. Am. J. 64:799-808.

10.2136/sssaj2000.642799x
52 

Rasse, D.P., C. Rumpel, and M.F. Dignac. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341-356.

10.1007/s11104-004-0907-y
53 

Reddy, A.R., G.K. Rasineni, and A.S. Raghavendra. 2010. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr. Sci. 99:46-57.

54 

Rustad, L.E., J.L. Campbell, G.M. Marion, R.J. Norby, M.J. Mitchell, A.E. Hartley, J.H.C. Cornelissen, and J. Gurevitch. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543-562.

10.1007/s00442000054428547240
55 

Taylor, B.R., D. Parkinson, and W.F.J. Parsons. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97-104.

10.2307/1938416
56 

Zhang, D.Q., D.F. Hui, Y.Q. Luo, and G.Y. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1:85-93.

10.1093/jpe/rtn002
57 

Zheng, Z., M. Manuti, H. Liu, Y. Shu, S. Hu, X. Wang, B. Li, L. Lin, and X. Li. 2017. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manage. 400:123-128.

10.1016/j.foreco.2017.06.002
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 51
  • No :4
  • Pages :377-387
  • Received Date :2018. 07. 20
  • Accepted Date : 2018. 11. 02