All Issue

2023 Vol.56, Issue 4 Preview Page

Original research article

30 November 2023. pp. 386-397
Abstract
References
1
Ahmad, M., A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, and D. Mohan. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19-33. 10.1016/j.chemosphere.2013.10.07124289982
2
Ahmad, M., S.S. Lee, X. Dou, D. Mohan, J.K. Sung, and J.E. Yang. 2012. Effects of pyrolysis temperature on soybean stover and peanut shell derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118:536-544. 10.1016/j.biortech.2012.05.04222721877
3
An, N.H., S.M. Lee, J.R. Cho, and C.R. Lee. 2019. Estimation of agricultural by-products and investigation on nutrient contents for alternatives of imported oil-cakes. J. Korea Org. Resour. Recycl. Assoc. 27(4):71-81. 10.17137/korrae.2019.27.4.71
4
Asai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 111:81-84. 10.1016/j.fcr.2008.10.008
5
Bi, Y., S. Cai, Y. Wang, Y. Xia, X. Zhao, S. Wang, and G. Xing. 2019. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits. J. Environ. Manage. 245:173-186. 10.1016/j.jenvman.2019.03.05131152961
6
Cantrell, K.B., P.G. Hunt, M. Uchimiya, J.M. Novak, and K.S. Ro. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107:419-428. 10.1016/j.biortech.2011.11.08422237173
7
Carter, S., S. Shackley, S. Sohi, T. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2):404-418. 10.3390/agronomy3020404
8
Chan, K.Y., L.V. Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2007. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 45:629-634. 10.1071/SR07109
9
Dahlawi, S., A. Naeem, Z. Rengel, and R. Naidu. 2018. Biochar application for the remediation of salt affected soils: Challenges and opportunities. Sci. Total Environ. 625:320-335. 10.1016/j.scitotenv.2017.12.25729289780
10
Ding, Y., Y. Liu, W. Wu, D. Shi, M. Yang, and Z. Zhong. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, Soil Pollut. 213(1):47-55. 10.1007/s11270-010-0366-4
11
He, L., H. Zhong, G. Liu, Z. Dai, P.C. Brookes, and J. Xu. 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 252:846-488. 10.1016/j.envpol.2019.05.15131202137
12
He, L., X. Zhao, S. Wang, and G. Xing. 2016. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil Tillage Res. 164:52-62. 10.1016/j.still.2016.05.006
13
Heo, J.M., G.E. Kim, J.H. Kim, B.W. Choi, S.J. Lee, B.S. Lee, and E.H. Jho. 2022. Study on the lettuce growth using different water sources in a hydroponic system. Korean J. Environ. Agric. 41(3):191-198. 10.5338/KJEA.2022.41.3.23
14
Hong, S.C., S.Y. Yu, K.S. Kim, G.H. Lee, and S.N. Song. 2020. Effects of biochar on early growth and nutrient content of vegetable seedlings. Korean J. Environ. Agric. 39(1):50-57. 10.5338/KJEA.2020.39.1.7
15
Hunt, J., M. DuPonte, D. Sato, and A. Kawabata. 2010. The basics of biochar: A natural soil amendment. SCM 30:1-6.
16
Jang, J.E., G.J. Lim, J.S. Park, J.M. Shim, C.S. Kang, and S.S. Hong. 2018. Application effects of biochar derived from pruned stems of pear tree on growth of crops and soil physico-chemical properties. J. Korea Org. Resour. Recycl. Assoc. 26(4):11-19. 10.17137/korrae.2018.26.4.11
17
Jeffery, S., F.G.A. Verheijen, M. van der Velde, and A.C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric., Ecosyst. Environ. 144:175-187. 10.1016/j.agee.2011.08.015
18
Jung, I.H., H.S. Na, H.J. Cho, O.Y. Kwon, S.G. Hong, and J.D. Shin. 2020. Responses of cabbage growth to different application ratios of activated rice hull biochar mixed fertilizer. Korean J. Soil Sci. Fert. 53(4):635-642. 10.7745/KJSSF.2020.53.4.635
19
Kang, S.W., S.H. Kim, J.H. Park, D.C. Seo, and J.S. Cho. 2017. Selection of optimal application of corn waste biochar for improvement of corn growth and soil fertility. Korean J. Soil Sci. Fert. 50(5):452-461. 10.7745/KJSSF.2017.50.5.452
20
Kang, S.W., W.J. Lee, H.G. Jeong, J.H. Park, J.H. Lee, J.J. Yun, S.Y. Kim, D.C. Seo, and J.S. Cho. 2018. Effect of application levels of inorganic fertilizer with biochar on corn growth in an upland field. Korean J. Soil Sci. Fert. 51(4):547-554. 10.7745/KJSSF.2018.51.4.547
21
Kang, Y.G., N.H. Kim, J.H. Kim, D.H. Ko, J.H. Lee, J.H. Chun, and T.K. Oh. 2022. Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality. Korean J. Agric. Sci. 49:357-366. 10.7744/kjoas.20220034
22
Kim, S.H., D.W. Lee, Y.J. Jeong, J.E. Byeon, S.H. Jeon, Y.H. Lee, S.I. Kwon, and J.H. Shim. 2022a. Characteristics of biochars derived from greenhouse crop wastes under different pyrolysis temperature and time conditions. Korean J. Soil Sci. Fert. 55(4):556-562. 10.7745/KJSSF.2022.55.4.556
23
Kim, Y.S., K.H. Kim, J.W. Han, T.G. Jeong, M.J. Kim, and I.J. Kim. 2022b. Effect of rice hull-derived biochar application on watermelon growth, and soil physico-chemical properties under greenhouse. Korean J. Soil Sci. Fert. 55:175-184. 10.7745/KJSSF.2022.55.3.175
24
Koh, I.H., J.E. Kim, S.Y. Park, Y.L. Choi, D.S. Kim, D.H. Moon, and Y.Y. Chang. 2022. Stabilization of As and heavy metals in farmland soil using iron nanoparticles impregnated biochar. J. Soil Groundwater Environ. 27(6):1-10. 10.7857/JSGE.2022.27.6.001
25
KREI. 2014. Domestic biomass use statis and activation plan. Korea Rural Economic Institute, Naju, Korea.
26
KREI. 2017. A study of efficient recycling agricultural and livestock wastes as resources. Korea Rural Economic Institute, Naju, Korea.
27
Laird, D., P. Fleming, B. Wang, R. Horton, and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3):436-442. 10.1016/j.geoderma.2010.05.012
28
Lee, S.I., G.Y. Kim, E.J. Choi, J.S. Lee, and H.C. Jung. 2017. Decreases nitrous oxide emission and increase soil carbon via carbonized biomass application of orchard soil. Korean J. Environ. Agric. 36(2):73-79. 10.5338/KJEA.2017.36.2.13
29
Lee, Y.J., H.S. Cho, J.Y. Kim, J.G. Kang, S.S. Rhee, and K.Y. Kim. 2012. Biochemical methane potential of agricul- tural residues and influence of ensiling on methane production. J. Korean Soc. Environ. Eng. 34(11):765-771. 10.4491/KSEE.2012.34.11.765
30
Lee, Y.S., H.J. Cho, J.Y. Heo, and Y.H. Lee. 2019. Effects of wood-derived biochar application on soil chemical properties and growth of lettuce (Lactuca sativa L.). Korean J. Soil Sci. Fert. 52(4):457-466. 10.7745/KJSSF.2019.52.4.457
31
Lehmann, J. 2007. A handful of carbon. Nature 447:143-144. 10.1038/447143a17495905
32
Lehmann, J. and S. Joseph. 2009. Biochar for environmental management, science and technology. Earthscan, London, UK.
33
Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersem, and E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70:1719-1730. 10.2136/sssaj2005.0383
34
Liu, W.J., H. Jiang, and H.Q. Yu. 2015. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 115:12251-12285. 10.1021/acs.chemrev.5b0019526495747
35
MAFRA. 2005-2021. Greenhouse status of facility vegetables and vegetable production performance. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea.
36
NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
37
Novak, J.M., I. Lima, B. Xing, J.W. Gaskin, C. Steiner, and K.C. Das. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3:195-206.
38
Oh, T.K., J.H. Lee, S.H. Kim, and H.C. Lee. 2017. Effect of biochar application on growth of chinese cabbage (Brassica chinensis). Korean J. Agric. Sci. 44:359-365. 10.7744/kjoas.20170039
39
Ok, Y.S., S.E. Oh, M. Ahmad, S. Hyun, K.R. Kim, and D.H. Moon. 2010. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 61:1301-1309. 10.1007/s12665-010-0674-4
40
Park, B.L., H.M. Cho, and M.S. Kim. 2021a. Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system. J. Korea Org. Resour. Recycl. Assoc. 29(1):19-27. 10.17137/korrae.2021.29.1.19
41
Park, J.H., S.W. Kang, J.J. Yun, S.G. Lee, S.H. Kim, J.S. Beak, and J.S. Cho. 2021b. Effects of co-application of biochars and composts on lettuce growth. Korean J. Soil Sci. Fert. 54(2):151-160. 10.7745/KJSSF.2021.54.2.151
42
Rogovska, N., D. Laird, R. Cruse, P. Fleming, T. Parkin, and D. Meek. 2011. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 75:871-879. 10.2136/sssaj2010.0270
43
Singh, B.P., B.J. Hatton, S. Balwant, A.L. Cowie, and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39:1224-1235. 10.2134/jeq2009.013820830910
44
Woo, S.H. 2013. Biochar for soil carbon sequestration. Clean Technol. 19(3):201-211. 10.7464/ksct.2013.19.3.201
45
Wu, N., H. Wei, and L. Zhang. 2012. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environ. Sci. Technol. 46:419-425. 10.1021/es202043u22129207
46
Xu, H.J., X.H. Wang, H. Li, H.Y. Yao, J.Q. Su, and Y.G. Zhu. 2014. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48:9391-9399. 10.1021/es502105825054835
47
Yu, G.D., H.B. Na, G.H. An, B.C. Koo, J.W. Ahn, Y.H. Moon, Y.L. Cha, Y.M. Yoon, J.W. Yang, and I.H. Choi. 2013. Physiochemical characteristics for bale types and storage periods of agricultural by-products as a lignocellulosic biomass. Korean J. Crop Sci. 58(3):324-330. 10.7740/kjcs.2013.58.3.324
48
Zhang, X., S. Kondragunta, C. Schmidt, and F. Kogan. 2008. Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmos. Environ. 42:6959-6972. 10.1016/j.atmosenv.2008.04.060
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :4
  • Pages :386-397
  • Received Date : 2023-10-17
  • Revised Date : 2023-11-22
  • Accepted Date : 2023-11-27