All Issue

2019 Vol.52, Issue 4 Preview Page

Article


November 2019. pp. 438-447
Abstract


References
1 

Backer, R., J.S. Rokem, G. Ilangumaran, J. Lamont, D. Praslickova, E. Ricci, S. Subramanian, and D.L. Smith. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of bostimulants for sustainable agriculture. Front. Plant Sci. 9:1473.

10.3389/fpls.2018.0147330405652PMC6206271
2 

Bal, H.B., S. Das, T.K. Dangar, and T.K. Adhya. 2013. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J. Basic Microbiol. 53:972-984.

10.1002/jobm.20120044523681643
3 

Beattie, G.A. 2015. Microbiomes: curating communities from plants. Nature. 528:340-341.

10.1038/nature1631926633626
4 

Bender, S.F., C. Wagg, and M.G. Van Der Heijden. 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31:440-452.

10.1016/j.tree.2016.02.01626993667
5 

Bhattacharyya, P.N. and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350.

10.1007/s11274-011-0979-922805914
6 

Bloemberg, G.V. and B. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350.

10.1016/S1369-5266(00)00183-7
7 

Castagno, L.N., M.J. Estrella, A.I. Sannazzaro, A.E. Grassano, and O.A. Ruiz. 2011. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J. Appl. Microbiol. 110:1151-1165.

10.1111/j.1365-2672.2011.04968.x21299771
8 

Dey, R., K.K. Pal, D.M. Bhatt, and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachishypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 159:371-394.

10.1016/j.micres.2004.08.00415646384
9 

Ellis, R.J., T.M. Timms-Wilson, and M.J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2:274-284.

10.1046/j.1462-2920.2000.00102.x11200428
10 

Garrido-Sanz, D., J.P. Meier-Kolthoff, M. Göker, M. Martín, R. Rivilla, and M. Redondo-Nieto. 2016. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11:e0150183.

10.1371/journal.pone.015018326915094PMC4767706
11 

Glick, B.R. 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 4:1109-1114.

10.1139/m95-015
12 

Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169:30-39.

10.1016/j.micres.2013.09.00924095256
13 

Gordon, S.A. and R.P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 2:192-195.

10.1104/pp.26.1.19216654351PMC437633
14 

Gupta, G., S.S. Parihar, N.K. Ahirwar, S.K. Snehi, and V. Singh. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7:96-102.

15 

Gupta, S. and S. Pandey. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front. Microbiol. 10:1506.

10.3389/fmicb.2019.0150631338077PMC6629829
16 

Heydarian, Z., M. Yu, M. Gruber, B.R. Glick, R. Zhou, and D.D. Hegedus. 2016. Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acds gene in transgenic plants increases salinity tolerance in camelina sativa. Front. Microbiol. 7:1966.

10.3389/fmicb.2016.0196628018305PMC5159422
17 

Holbrook, A., W. Edge, and F. Bailey. 1961. Spectrophotometric method for determination of gibberellic acid. Adv. Chem. Ser. 28:159-167.

10.1021/ba-1961-0028.ch018
18 

Illmer, P.A. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395.

10.1016/0038-0717(92)90199-8
19 

Islam, S., A.M. Akanda, A. Prova, M.T. Islam, and M.M. Hossain. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front. Microbiol. 6:1360.

10.3389/fmicb.2015.0136026869996PMC4735380
20 

Jeon, J.S., S.S. Lee, H.Y. Kim, T.S. Ahn, and H.G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41:271-276.

21 

Khan, A.A., G. Jilani, M.S. Akhtar, S.M.S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1:48-58.

22 

Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17:1244-1245.

10.1093/bioinformatics/17.12.124411751241
23 

Leveau, J.H.J. and S.E. Lindow. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71:2365-2371.

10.1128/AEM.71.5.2365-2371.200515870323PMC1087548
24 

Loper, J.E., K.A. Hassan, D.V. Mavrodi, E.W. Davis, C.K. Lim, B.T. Shaffer, L.D.H. Elbourne, V.O. Stockwell, S.L. Hartney, K. Breakwell, M.D. Henkels, S.G. Tetu, L.I. Rangel, T.A. Kidarsa, N.L. Wilson, J.E. van de Mortel, C. Song, R. Blumhagen, D. Radune, J.B. Hostetler, L.M. Brinkac, A.S. Durkin, D.A. Kluepfel, W.P. Wechter, A.J. Anderson, Y.C. Kim, L.S. Pierson, E.A. Pierson, S.E. Lindow, D.Y. Kobayashi, J.M. Raaijmakers, D.M. Weller, L.S. Thomashow, A.E. Allen, and I.T. Paulsen. 2012. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 8:e1002784.

10.1371/journal.pgen.100278422792073PMC3390384
25 

Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556.

10.1146/annurev.micro.62.081307.16291819575558
26 

Morgan, P.W. and M.C. Drew. 1997. Ethylene and plant responses to stress. Physiol. Plant. 100:620-630.

10.1111/j.1399-3054.1997.tb03068.x
27 

Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:265-270.

10.1016/S0003-2670(00)88444-5
28 

Omer, Z.S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43:93-96.

10.1023/B:GROW.0000038360.09079.ad
29 

Penrose, F.D.M. and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol. Plant. 118:10-15.

10.1034/j.1399-3054.2003.00086.x12702008
30 

Pii, Y., T. Mimmo, N. Tomasi, R. Terzano, S. Cesco, and C. Crecchio. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. Biol. Fertil. Soils. 51:403-415.

10.1007/s00374-015-0996-1
31 

Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya. 17:362-370.

32 

Rengel, Z. and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168:305-312.

10.1111/j.1469-8137.2005.01558.x16219070
33 

Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.

10.1016/S0734-9750(99)00014-2
34 

Saber, K., L.D. Nahla, and A. Chedly. 2005. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25:389-393.

10.1051/agro:2005034
35 

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol. Biol. Evol. 4:406-425.

36 

Santoro, M.V., L.R. Cappellari, W. Giordano, and E. Banchio. 2015. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol. (Stuttg). 17:1218-1226.

10.1111/plb.1235126012535
37 

SAS. 1999. SAS/STAT User's Guide Version 8. SAS. Cary. NC.

38 

Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbe: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2:587.

10.1186/2193-1801-2-58725674415PMC4320215
39 

Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics 2nd Eds. New York, NY: McGraw Hill Book Co. Inc.

40 

Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.

10.1093/nar/25.24.48769396791PMC147148
41 

Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255:571-586.

10.1023/A:1026037216893
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 52
  • No :4
  • Pages :438-447
  • Received Date :2019. 09. 19
  • Revised Date :2019. 11. 04
  • Accepted Date : 2019. 11. 05