All Issue

2018 Vol.51, Issue 3 Preview Page
August 2018. pp. 180-188
Abstract

Soil organic carbon(SOC) is one of the most important constituents of soils due to its capacity in affecting plant growth indirectly and directly. The change of SOC content is associated with organic input with various sources in soil. This study was conducted as follows; the evaluation of the effects of altitude above sea levels on SOC concentration in forest and arable soil under climatic zone, investigation of relationship between SOC contents and temperature in soil with elevation. Under the different climatic zone, the SOC concentration in forest and arable soil was affected by increasing the altitude levels. The SOC concentration of forest soil was higher than that of arable soil regardless of climatic zone. Also, the SOC was dramatically related to the soil temperature with altitude, which was induced the increase of SOC contents in forest and arable soils. These results indicated that the soil temperature with altitude could be differed carbon storage in forest and arable soil between climatic zone.

Effect of elevation gradient on soil organic carbon(SOC) in forest and arable soils under different climatic zone.

References
  1. Ahn, J.H., C.H. Park, J.S. Ryu, and Y.I. Jin. 2008. Distribution mapping for pptimal of highland agricultural zone in current and global warming future in Korea. Korean Journal of Agricultural and Forest Meteorology. 17:82-86.
  2. Anderson, S., and S. I. Nilsson. 2001. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Bio. Biochem. 33(9): 1181-1191.
  3. Ashton, S., D. Gutierrez, and R.J. Wilson. 2009. Effects of temperature and elevation on habitat use by a rare mountain butterfl y: implications for species responses to climate change. Ecological Entomology. 34:437-446.10.1111/j.1365-2311.2008.01068.x
  4. Augusto, L., A.De Sehrijver, L. Vesterdal, A. Smolander, C. Preseott and J. Ranger. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90:444-66.doi.org/10.1111/brv.1211924916992
  5. Batjes, N.H. 2014. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 5:10-25.10.1111/ejss.12114_2
  6. Bekku, Y.S, T. Nakatsubo, A. Kume, and H. Koizumi. 2004. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Nylesund, Svalbard. Arctic, Antarctic, and Alpine Research. 36(4):395-399.10.1657/1523-0430(2004)036[0395:SMBRRA]2.0.CO;2
  7. Bernal, M.P., C. Paredes., M. A. Sanchez-Monedero., and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63:91-99.10.1016/S0960-8524(97)00084-9
  8. Côté, L., S. Brown, D Paré., J. Fyles, and J. Bauhus. 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Bio. Biochem. 32:1079-1090.10.1016/S0038-0717(00)00017-1
  9. Craine, J.M., and T.M. Gelderman. 2010. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Bio. Biochem. 43:455-457.10.1016/j.soilbio.2010.10.011
  10. Davidson, E.A., and Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173.10.1038/nature0451416525463
  11. Fang, C.M., P. Smith, J.B. Moncrieff, and J.U. Smith. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature. 436:881-81.10.1038/nature04044
  12. Fierer, N., J.M. Craine, K. McLauchlan, and J.P. Schimel. 2005 Litter quality and the temperature sensitivity of decomposition. Ecology. 86:320-26.10.1890/04-1254
  13. Ghani, A., M. Dexter, and K.W. Perrott. 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 35:1231-1243.10.1016/S0038-0717(03)00186-X
  14. Giardina, C.P., and M.G. Ryan. 2000 Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858-861.10.1038/3500907610786789
  15. Heal, O. W. , J. M. Anderson , and M. J. Swift. 1997. Plant litter quality and decomposition: An historical overview. Pages 3-30 in G. Cadisch, K. E. Giller, editors. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK.
  16. Janzena, H.H,, C.A Campbellb, R.C Izaurraldec, B.H Ellerta, N Jumac, W.B McGillc, and R.P Zentnerb. 1998. Management effects on soil C storage on the Canadian prairies. Soil Tillage Res. 47:181-195.10.1016/S0167-1987(98)00105-6
  17. Jones, C., C.McConnell, K.Coleman, P. Cox, P. Falloon, and D. Jenkinson. 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 11(1):154-66.10.1111/j.1365-2486.2004.00885.x
  18. Ko, B.G., M. S. Kim, S. J. Park, S. G. Yun, T. K. Oh, and C. H. Lee, 2015. Effect of Decomposition on nitrogen dynamics in soil applied with compost and rye. Korean J. Soil Sci. Fert. 648-657.
  19. Kong, W.S. 1999. The vertical distribution of air temperature and thermal amplitude of Alpine plants on Mt. Halla, Cheju lsland, Korea. J. Korean Geographical Soc. 34(4):385-393.
  20. Lee, C.H., D. K. Lee, M. A. Ali, and P.J. Kim. 2008. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Manage. 28:2702-2708.10.1016/j.wasman.2007.12.00518294833
  21. Lee, S.B., C.H. Lee, K.Y. Jung, K.D. Park, D.K. Lee, and P.J. Kim. 2009. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res. 104:227-232.10.1016/j.still.2009.02.007
  22. Li, H.J., J.X. Yan, X.F. Yue, and M.B. Wang. 2008. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agric. For. Meteorol. 148:490-503.10.1016/j.agrformet.2007.10.009
  23. Liski, J., H. Ilvesniemi, A. Makela, and C.J. Westman. 1999. CO2 emissions from soil in response to climatic warming are overestimated the decomposition of old soil organic matter is tolerant of temperature. Ambio. 28:171-74.
  24. Lloyd, J., and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8:315-323.10.2307/2389824
  25. Merrill, R.M., D. Gutiérrez. O.T. Lewis, J. Gutiérrez, S.B. Díez, and R.J. Wilson. 2008. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect . J. Anim. Ecol. 77:145-155.10.1111/j.1365-2656.2007.01303.x18177334
  26. Palm, C.A., R.J.K. Myers, and S.M. Nandwa, 1997. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In: Buresh R.J., Sanchez, P.A., Calhoun, F.E. (Eds.), Replenishing Soil Fertility in Africa. SSSA Special Publication, vol. 51. Soil Science Society of America, Madison, WI, USA, pp. 193-218.
  27. Post, W.M., Kwon, K.C. 2000. Soil carbon sequestration and land‐use change: processes and potential. Glob Change Biol. 6(3):317-2710.1046/j.1365-2486.2000.00308.x
  28. Prescott, C.E. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochem. 101:133-149.10.1007/s10533-010-9439-0
  29. Sainju, U.M., B.P. Singh, S. Rahman, and V.R. Reddy. 1999. Soil nitrate-nitrogen under tomato following tillage, cover cropping, and nitrogen fertilization. J. Environ. Qual. 28:1837-1844.10.2134/jeq1999.00472425002800060021x10.2134/jeq1999.2861837x
  30. Sellami, F., R. Jarboui., S. Hachicha., K. Medhioub., and E. Ammar. 2008. Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour. Technol. 99:1177-1188.10.1016/j.biortech.2007.02.01817433668
  31. Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil. Bio. Biochem. 32:2099-2103.10.1016/S0038-0717(00)00179-6
  32. Stockmann, U., M.A. Adams, J.W. Crawford, D.J. Field, N. Henakaarchchi, M. Jenkins, B. Minasny, A.B. McBratney, V.D.R.D. Courcelles, K. Singh, I. Wheeler, L. Abbott, D.A. Angers, J. Baldock, M. Bird, P.C. Brookes, C. Chenu, J.D. Jastrow, R. Lal, J. Lehmann, A.G. O'Donnell, W.J. Parton, D. Whitehead, and M. Zimmermann. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164:80-99.10.1016/j.agee.2012.10.001
  33. Teklay, T., A. Nordgren, G. Nyberg, and A. Malmer. 2007. Carbon mineralization of leaves from four Ethiopian agroforestry species under laboratory and field conditions. Appl. Soil Ecol. 35:193-202.10.1016/j.apsoil.2006.04.002
  34. Wang, G., Y. Zhou, X. Xu, H. Ruan, and J. Wang. 2013. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi mountains, China. PLOS ONE. 8(1):1-7.10.1371/journal.pone.0053914
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 51
  • No :3
  • Pages :180-188
  • Received Date :2018. 05. 08
  • Accepted Date : 2018. 08. 31