All Issue

2023 Vol.56, Issue 4 Preview Page

Review

30 November 2023. pp. 572-594
Abstract
References
1
Bergman, R.D., H. Gu, D.S. Page-Dumroese, and N. Anderson. 2016. Chapter 3: Life cycle analysis of biochar. p. 46-69. In V.J. Bruckman et al. (ed.) Biochar: A regional supply chain approach in view of climate change mitigation. Cambridge University Press, New York, NY, USA. 10.1017/9781316337974.004
2
Budai, A., A.R. Zimmerman, A.L. Cowie, J.B.W. Webber, B.P. Singh, B. Glaser, C.A. Masiello, D. Andersson, F. Shields, J. Lehmann, M. Camps Arbestain, M. Williams, S. Sohi, and S. Joseph. 2013. Biochar carbon stability test method: An assessment of methods to determine biochar carbon stability. IBI Document, Carbon Methodology. International Biochar Initiative, www.biochar-international.org (accessed 15 February 2014).
3
Camps-Arbestain, M., J.E. Amonette, B. Singh, T. Wang, and H.P. Schmidt. 2015. Chapter 8: A biochar classification system and associated test methods. p. 165-193. In J. Lehmann and S. Joseph (ed.) Biochar for environmental management: Science, technology and implementation. Routledge, New York, NA, USA.
5
Carbonfuture. 2022. What is biochar? https://www.carbonfuture.earth/magazine/what-is-biochar.
6
Carbonfuture. 2023. Carbon removal you can trust. https://platform.carbonfuture.earth/balancer/portfolios.
7
Carvalho, J., L. Nascimento, M. Soares, N. Valério, A. Ribeiro, L. Faria, A. Silva, N. Pacheco, J. Araújo, and C. Vilarinho. 2022. Life cycle assessment (LCA) of biochar production from a circular economy perspective. Processes 10(12):2684. 10.3390/pr10122684
8
Dawes, A., C. McGeady, and J. Majkut. 2023. Voluntary carbon markets: A review of global initiatives and evolving models. CSIS BRIEFS (www.csis.org).
9
Draper, K. 2019. Biochar labeling & US certifications. https://pyrolist.com/blog/biochar-labeling-us-certifications.
10
Dutta, T., E. Kwon, S.S. Bhattacharya, B.H. Jeon, A. Deep, M. Uchimiya, and K.H. Kim. 2017. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. GCB Bioenergy 9(6):990-1004. 10.1111/gcbb.12363
11
EBC. 2021. Certification of the carbon sink potential of biochar. Version 2.1E of 1st February 2021. Ithaka Institute, Arbaz, Switzerland (http://european-biochar.org).
12
EBC. 2023a. European biochar certificate - Guidelines for a sustainable production of biochar. Version 10.3 from 5th April 2023. Carbon Standards International (CSI), Frick, Switzerland (http://european-biochar.org).
13
EBC. 2023b. Positive list of permissible biomasses for the production of biochar. https://www.european-biochar.org/media/doc/2/positive-list_en_v10_3.pdf.
14
EBC. 2023c. Positive list of permissible matrices for the establishment of biochar C-sinks. Version 1.4 as of 25th July 2023. https://www.european-biochar.org/media/doc/139/matrix_list_ebc.pdf.
15
EBI. 2020. Biochar-based carbon sinks to mitigate climate change. https://www.biochar-industry.com/wp-content/uploads/2020/10/Whitepaper_Biochar2020.pdf.
17
Erbach, G. and G.A. Victoria. 2021. Carbon dioxide removal: Nature-based and technological solutions. European Parliamentary Research Service (EPRS). https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)689336.
18
Fawzy, S., A.I. Osman, H. Yang, J. Doran, and D.W. Rooney. 2021. Industrial biochar systems for atmospheric carbon removal: A review. Environ. Chem. Lett. 19:3023-3055. 10.1007/s10311-021-01210-1
19
Fawzy, S., A.I. Osman, N. Mehta, D. Moran, H. Ala'a, D.W. Rooney. 2022. Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. J. Cleaner Prod. 371:133660. 10.1016/j.jclepro.2022.133660
20
Gillenwater, M. 2012. What is additionality? Part 1: A long standing problem. Discussion Paper No. 001 (Version 03). Greenhouse Gas Management Institute, Silver Spring, MD, USA.
21
Göss, S. 2023. EU carbon removal certification framework: New rules to turn greenwashing into genuine removals. EnergyPost.eu (https://energypost.eu/).
22
Gullett, B.K., A.F. Sarofim, K.A. Smith, and C. Procaccini. 2000. The role of chlorine in dioxin formation. Process Saf. Environ. Prot. 78(1):47-52. 10.1205/095758200530448
23
Guo, M. 2020. The 3R principles for applying biochar to improve soil health. Soil Syst. 4(1):9. 10.3390/soilsystems4010009
24
Gustavsson, L., T. Karjalainen, G. Marland, I. Savolainen, B. Schlamadinger, and M. Apps. 2000. Project-based greenhouse-gas accounting: Guiding principles with a focus on baselines and additionality. Energy Policy 28(13):935-946. 10.1016/S0301-4215(00)00079-3
25
Gwenzi, W., N. Chaukura, F.N.D. Mukome, S. Machado, and B. Nyamasoka. 2015. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manage. 150:250-261. 10.1016/j.jenvman.2014.11.02725521347
26
Han, K.H., Y.S. Zhang, K.H. Jung, H.R. Cho, and Y.K. Sonn. 2014. Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar. Korean J. Agric. Sci. 41(4):369-377. 10.7744/cnujas.2014.41.4.369
27
Hilber, I., A.C. Bastos, S. Loureiro, G. Soja, A. Marz, G. Cornelissen, and T.D. Bucheli. 2017a. The different faces of biochar: Contamination risk versus remediation tool. J. Environ. Eng. Landscape Manage. 25:86-104. 10.3846/16486897.2016.1254089
28
Hilber, I., P. Mayer, V. Gouliarmou, S.E. Hale, G. Cornelissen, H.-P. Schmidt, and T.D. Bucheli. 2017b. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere 174:700-707. 10.1016/j.chemosphere.2017.02.01428199946
29
IBI. 2015. Standardized product definition and product testing guidelines for biochar that is used in soil. Version of November 23, 2015. https://biochar-international.org/wp-content/uploads/2023/01/IBI_Biochar_Standards_V2.1_Final.pdf.
30
IPCC. 2019. Appendix 4 - Method for estimating the change in mineral soil organic carbon stocks from biochar amendments: Basis for future methodological development. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Ap4_Biochar.pdf.
32
IPCC. 2023. Summary for policymakers. p. 1-34. In Core Writing Team et al. (ed.) Climate Change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. doi: 10.59327/IPCC/AR6-9789291691647.001. 10.59327/IPCC/AR6-9789291691647.001
33
Ippolito, J.A., L. Cui, C. Kammann, N. Wrage-Mönnig, J.M. Estavillo, T. Fuertes-Mendizabal, M.L. Cayuela, G. Sigua, J. Novak, and N. Borchard. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2:421-438. 10.1007/s42773-020-00067-x
34
Ithaka Institute. 2022. Guidelines for carbon sink certification for artisan biochar production. Version 1.0 (6th October 2022). Carbon Standards International (CSI), Frick, Switzerland. https://www.carbon-standards.com/docs/transfer/36_400EN.pdf.
35
Jang, J.E., G.J. Lim, J.S. Park, J.M. Shim, C.S. Kang, and S.S. Hong. 2018. Application effects of biochar derived from pruned stems of pear tree on growth of crops and soil physico-chemical properties. J. Korea Org. Resour. Recycl. Assoc. 26(4):11-19. 10.17137/korrae.2018.26.4.11
36
Kim, J., G. Yoo, D. Kim, W. Ding, and H. Kang. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 117-118:57-62. 10.1016/j.apsoil.2017.05.006
37
Kim, M. and G. Kim. 2014. Analysis of environmental impacts for the biochar production and soil application. J. Korean Soc. Environ. Eng. 36(7):461-468. 10.4491/KSEE.2014.36.7.461
38
Kim, Y.S., K.H. Kim, J.W. Han, T.G. Jeong, M.J. Kim, and I.J. Kim. 2022. Effect of rice hull-derived biochar application on watermelon growth, and soil physico-chemical properties under greenhouse. Korean J. Soil Sci. Fert. 55(3):175-184. 10.7745/KJSSF.2022.55.3.175
39
Ko, H.J. and K.Y. Kim. 2016. Heavy metals contents and chemical characteristics in compost from animal manures. J. Korean Soc. Occup. Environ. Hyg. 26(2):170-177. 10.15269/JKSOEH.2016.26.2.170
40
Lee, J.M., D.G. Park, S.S. Kang, E.J. Choi, H.S. Gwon, H.S. Lee, and S.I. Lee. 2021. Greenhouse gas emissions according to application of biochar by soil type in the closed chamber. Korean J. Soil Sci. Fert. 54(4):451-466. 10.7745/KJSSF.2021.54.4.451
41
Lehmann, J. and S. Joseph. 2015. Chapter 1: Biochar for environmental management: An introduction. p. 1-13. In J. Lehmann and S. Jeseph (ed.) Biochar for environmental management: Science, technology and implementation. Routledge, New York, NA, USA. 10.4324/9780203762264
42
Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems - a review. Mitigation Adapt. Strategies Global Change 11:403-427. 10.1007/s11027-005-9006-5
43
Lehmann, J., S. Abiven, M. Kleber, G. Pan, B.P. Singh, S.P. Sohi, and A.R. Zimmerman. 2015. Chapter 10: Persistence of biochar in soil. p. 233-280. In J. Lehmann and S. Jeseph (ed.) Biochar for environmental management: Science, technology and implementation. Routledge, New York, NA, USA. 10.4324/9780203762264
44
Lehmann. 2007. A handful of carbon. Nature 447(7141):143-144. 10.1038/447143a17495905
45
Li, S. and D. Tasnady. 2023. Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C 9(3):67. 10.3390/c9030067
46
McDonald, H., N. Bey, L. Duin, A. Frelih-Larsen, L. Maya-Drysdale, R. Stewart, C. Pätz, M.N. Hornsleth, C. Heller, and P. Zakkour. 2021. Certification of carbon removals. Part 2: A review of carbon removal certification mechanisms and methodologies. REP-0796. Umweltbundesamt GmbH, Vienna, Austria. https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0796bfz.pdf.
47
Nabuurs, G.J., R. Mrabet, A. Abu Hatab, M. Bustamante, H. Clark, P. Havlík, J. House, C. Mbow, K.N. Ninan, A. Popp, S. Roe, B. Sohngen, and S. Towprayoon. 2022. Chapter 7: Agriculture, forestry and other land uses (AFOLU). In P.R. Shukla et al. (ed.) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.009. 10.1017/9781009157926.009
48
Nasdaq. 2021. Nasdaq acquires emerging carbon removal market Puro.earth. http://www.nasdaq.com/press-release/nasdaq-acquires-emerging-carbon-removal-market-puro.earth-2021-06-14.
49
NIAST. 1992. Korean soil review. National Institute of Agricultural Technology, RDA, Suwon, Korea.
50
Omondi, M.O., X. Xia, A. Nahayo, X. Liu, P.K. Korai, and G. Pan. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28-34. 10.1016/j.geoderma.2016.03.029
51
Park, J.H., S.W. Kang, J.J. Yun, S.G. Lee, S.H. Kim, J.S. Beak, and J.S. Cho. 2021. Effects of co-application of biochars and composts on lettuce growth. Korean J. Soil Sci. Fert. 54(2):151-160. 10.7745/KJSSF.2021.54.2.151
52
Pathak, M., R. Slade, P.R. Shukla, J. Skea, R. Pichs-Madruga, and D. Ürge-Vorsatz. 2022. Technical Summary. In P.R. Shukla et al. (ed.) Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.002. 10.1017/9781009157926.002
53
Puro.earth and Nasdaq. 2023. Carbon removals: Achieving a net-negative economy. https://www.nasdaq.com/solutions/carbon-removal-platform.
54
Puro.earth. 2022. Puro standard Biochar methodology Edition V2. https://puro.earth/methodologies/.
55
Rathnayake, D., H.-P. Schmidt, J. Leifeld, J. Mayer, C.A. Epper, T.D. Bucheli, and N. Hagemann. 2023. Biochar from animal manure: A critical assessment on technical feasibility, economic viability, and ecological impact. GCB Bioenergy 15:1078-1104. 10.1111/gcbb.13082
56
RDA. 2023. Fertilizer control act. Rural Development Administration. https://www.law.go.kr/.
57
Roe, S., C. Streck, R. Beach, J. Busch, M. Chapman, V. Daioglou, A. Deppermann, J. Doelman, J. Emmet-Booth, J. Engelmann, O. Fricko, C. Frischmann, J. Funk, G. Grassi, B. Griscom, P. Havlik, S. Hanssen, F. Humpenöder, D. Landholm, G. Lomax, J. Lehmann, L. Mesnildrey, G.-J. Nabuurs, A. Popp, C. Rivard, J. Sanderman, B. Sohngen, P. Smith, E. Stehfest, D. Woolf, and D. Lawrence. 2021. Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biol. 27(23):6025-6058. 10.1111/gcb.1587334636101PMC9293189
58
Schmidt, H.-P., A. Anca-Couce, N. Hagemann, C. Werner, D. Gerten, W. Lucht, and C. Kammann. 2019. Pyrogenic carbon capture and storage. GCB Bioenergy 11:573-591. 10.1111/gcbb.12553
59
Shin, H.S. and E.J. Hwang. 1998. State and prospects of organic waste composting in Korea. J. Korea Org. Resour. Recycl. Assoc. 6(2):7-30.
60
UCLA Sustainability. 2023. What is sustainability? https://www.sustain.ucla.edu/what-is-sustainability/.
61
UNFCCC. 2008a. Methodological tool: Baseline, project and/or leakage emissions from electricity consumption and monitoring of electricity generation. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-05-v3.pdf.
62
UNFCCC. 2008b. Tool to calculate project or leakage CO2 emissions from fossil fuel combustion (Version 02). https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-03-v2.pdf.
63
UNFCCC. 2021. Decision 2/CMA.3. Guidance on cooperative approaches referred to in Article 6, Paragraph 2, of the Paris Agreement. UNFCCC, Glasgow, UK.
65
USDA NRCS. 2022. Conservation practice standard soil carbon amendment (Code 336). https://www.nrcs.usda.gov/sites/default/files/2022-11/336-NHCP-CPS-Soil-Carbon-Amendment-2022.pdf.
66
Verra. 2023. VM0044: Methodology for biochar utilization in soil and non-soil applications (Version 1.1). https://verra.org/methodologies/vm0044-methodology-for-biochar-utilization-in-soil-and-non-soil-applications/.
67
Wang, A., D. Zou, L. Zhang, X. Zeng, H. Wang, L. Li, F. Liu, B. Ren, and Z. Xiao. 2019. Environmental risk assessment in livestock manure derived biochars. RSC Adv. 9(69):40536-40545. 10.1039/C9RA08186K35542644PMC9076269
68
Wang, A., D. Zou, X. Zeng, B. Chen, X. Zheng, L. Li, L. Zhang, Z. Xiao, and H. Wang. 2021. Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure. Sci. Rep. 11:11994. 10.1038/s41598-021-91440-834099807PMC8185107
69
Wang, L., J. Deng, X. Yang, R. Hou, and D. Hou. 2023. Role of biochar toward carbon neutrality. Carbon Res. 2(1):2. 10.1007/s44246-023-00035-7
70
Woo, S.H. 2013. Biochar for soil carbon sequestration. Clean Technol. 19(3):201-211. 10.7464/ksct.2013.19.3.201
71
Woolf, D., J. Lehmann, S. Ogle, A.W. Kishimoto-Mo, B. McConkey, and J. Baldock. 2021. Greenhouse gas inventory model for biochar additions to soil. Environ. Sci. Technol. 55(21):14795-14805. 10.1021/acs.est.1c0242534637286PMC8567415
72
Xiang, L., S. Liu, S. Ye, H. Yang, B. Song, F. Qin, M. Shen, C. Tan, G. Zeng, and X. Tan. 2021. Potential hazards of biochar: The negative environmental impacts of biochar applications. J. Hazard. Mater. 420:126611. 10.1016/j.jhazmat.2021.12661134271443
73
Yi, Q., F. Qi, G. Cheng, Y. Zhang, B. Xiao, Z. Hu, S. Liu, H. Cai, and S. Xu. 2013. Thermogravimetric analysis of co-combustion of biomass and biochar. J. Therm. Anal. Calorim. 112:1475-1479. 10.1007/s10973-012-2744-1
74
Zhang, J., F. Wang, S.S.K. Yalamarty, N. Filipczak, Y. Jin, and X. Li. 2022. Nano silver-induced toxicity and associated mechanisms. Int. J. Nanomed. 17:1851-1864. 10.2147/IJN.S35513135502235PMC9056105
Information
  • Publisher :Korean Society of Soil Science and Fertilizer
  • Publisher(Ko) :한국토양비료학회
  • Journal Title :Korean Journal of Soil Science and Fertilizer
  • Journal Title(Ko) :한국토양비료학회 학회지
  • Volume : 56
  • No :4
  • Pages :572-594
  • Received Date : 2023-09-26
  • Revised Date : 2023-10-23
  • Accepted Date : 2023-10-23